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SUMMARY 

High-performance liquid chromatographic separation in an overload mode has 
been studied using the Craig-distribution scheme, assuming a Langmuir isotherm. 
Elution curves were determined as a function of sample mass by computer simulation, 
for different values of both capacity factor (k’) and column plate number (N> at low 
loading (kO and N,). It was possible to generalize these data so as to correlate Craig 
elution curves with sample mass and other experimental conditions, through the 
definition of certain “loading functions”: Wxk and wXN. This led to a more rapid 
(“second generation”) computer program for the prediction of elution curves for 
single compounds, as a function of sample mass, retention, and any plate number. 
Predictions by the latter approach agree well with the more time-consuming Craig 
simulations. This work provides a starting basis for studying overload high-perform- 
ance liquid chromatographic separation as a function of sample size and experimental 
conditions. Later papers will show that (a) experimental data under overload con- 
ditions correlate well with the present model, and (b) the model can be extended to 
the case of two co-eluting solutes. 

INTRODUCTION 

Preparative separations by high-performance liquid chromatography (HPLC) 
are of increasing interest. Today this technique is often used to purify multi-gram 
quantities of various compounds, and some groups are carrying out separations at 
the kilogram and higher scale1,2. For such applications, the column will usually be 
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operated in a “mass-overload” mode, such that sample retention and band-width are 
changed from what is observed under “analytical” (i.e., small-sample) conditions3. 
Separation in an overload mode is usually much more complex than for the case of 
small-sample HPLC. A good deal of attention has been given to overload separa- 
tions4-*O but a comprehensive and convenient description of such procedures is not 
yet available. There is even considerable debate among experts as to whether ana- 
lytical-scale separations can provide useful information for the design of correspond- 
ing overload separations. 

There is a pressing need for a practical theory of overload HPLC that can be 
used for most separations, with a minimum of additional measurements, e.g., no 
determination of sorption isotherms. The present two papers* l plus reports to follow 
describe a new approach for understanding preparative HPLC under mass-overload 
conditions. We begin by using a model of chromatographic separation based on 
Craig-distributionzz plus the assumption of Langmuir-isotherm retention23. This 
allows us to carry out computer-simulated HPLC separations under mass-overload 
conditions, for a single-solute sample. We then generalize the results of these com- 
puter simulations to arrive at simple relationships which give insight into overload- 
HPLC. These relationships also allow us to replace the time-consuming Craig sim- 
ulations with second-generation computer simulations that require only a few min- 
utes per run, regardless of column plate number. These results are described in the 
present paper. 

In the following paper*l we describe the extension of the above model to the 
case of non-Langmuir retention. We will show that a change in isotherm shape or 
type leads to an apparent reduction in the saturation capacity of the column, but 
often does not otherwise affect preparative separation. We will further show that an 
apparent column capacity (for a given HPLC system) is easily determined from a few 
overload experiments with small columns. This allows computer simulation of further 
runs under overload conditions. We will also show that experimental runs with a 
single solute (mass-overload conditions) are in reasonable agreement with our model. 
With minor, empirical adjustments in the starting Craig model, computer simulation 
can now be used to predict the effects of overload on the HPLC separation of a single 
band. Later papers will extend this treatment to the case of two co-eluting solutes. 

COMPUTER SIMULATIONS 

The Craig simulations were written in BASIC and executed on an IBM-XT 
(IBM, Boca Raton, FL, U.S.A.) with the use of a Microsoft BASIC compiler (Mi- 
crosoft, Bellevue, WA, U.S.A.). Using the equations for a Langmuir isotherm (see 
Appendix I) and assigning the phase ratio $ = 0.1, the fraction of solute in the 
mobile phase (Y) was calculated as a function of total solute mass in both phases (for 
k. = 1, 3, and IO). Values of r vs. solute mass for each value of k. were then fit to 
an 8-term polynomial, using the General Statistics Pat (Hewlett-Packard, Palo Alto, 
CA, U.S.A.) on an HP-85 computer (Hewlett-Packard). 

In our simulation algorithm, the sample is initially transferred to the mobile 
phase of the first cell. After equilibrating the two phases in the first cell, the fraction 
of solute in the mobile phase is calculated from the appropriate polynomial for r. 
The mobile phase is passed to the second cell, and fresh mobile phase is added to the 
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first cell. The two cells are again equilibrated, and the fraction of solute in the mobile 
phase of each cell is calculated as before. This process is repeated until 99.999% of 
the solute has left the last cell. Likewise, when the solute concentration in any cell 
decreases to 0.001% of the total injected sample-mass, that cell is ignored in further 
calculations. When the last cell is filled with mobile phase (after II transfers when the 
total number of cells, n, = n), the solute mass in the mobile phase for this cell is 
transferred to an open file, as are subsequent transfers from the last cell. These data 
are equivalent to the calculated elution band. Calculations of k’ and N were accom- 
plished on the basis of both “band” and “cumulative” measurements (see Fig. 1 and 
below). 

THEORY AND RESULTS 

HPLC separations under analytical conditions generally approximate Gaus- 
sian elution bands with values of k’ and N that do not vary with sample mass w, 
(when wX does not exceed a certain maximum value). Thus the shape and position 
of the band within the chromatogram remain fixed. When w, is increased beyond 
some limit, values of the capacity factor k’ and plate number N generally decrease 
with further increase in wX, and the band becomes non-Gaussian (as measured by the 
peak asymmetry factor A,)*. This is illustrated by reversed-phase HPLC runs for 
benzyl alcohol under analytical vs. overload conditions (0.94 mg injection, 5 x 0.46 
cm column of Zorbax** Cs): 

Small sample 0.94 mg 
k’ 2.86 2.40 
N 1836 241 

A, 1.0 3.3 

Fig. la shows the benzyl alcohol band for this 0.94-mg sample. 
Values of k’ and N (in combination with derived overload parameters) deter- 

mine the final separation under overload conditions. This is illustrated for Craig- 
simulated data in Fig. 8 of the present paper, and for experimental data in Figs. 26 
and 27 of the following paper 21 The following discussion is based on values of k’ . 
and N, and how these parameters vary with experimental conditions in overload 
separations. Overload values of k’ and N can be measured in various ways. In Fig. 
la, k’ is calculated from the retention time tR (peak maximum, 95.7 s) and column 
dead time to (28.2 s) in the usual way: k’ = 2.40. Likewise, N is calculated from the 
bandwidth W, at 0.61 x band height (20, see p. 834 of ref. 3) and the retention time 
of 95.7 s: N = (tR/c)2, or a value of N = 241 for the band of Fig. la. 

Values of k’ and N can also be determined from the derived cumulative elution 
(integral) plot of Fig. lb. Here retention time is defined as the time when 50% of the 
solute has eluted from the column. Bandwidth is measured as the time difference 
between 15.9% and 84.1% elution, corresponding to f lo. Values of k’ and N cal- 
culated in these two ways are slightly different for this overload separation (Fig. lb 
vs. la). These differences become greater for increased sample size. 

l For definitions of symbols used in these two papers, see the Glossary of symbols at the end of 
this paper. We define A, in terms of the usual bandwidth measurements at 10% of peak maximum. 

l * Zorbax is a trademark of the Du Pont Company. 
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Fig. 1. Elution curves for a typical overloaded separation. Sample, benzyl alcohol, 0.94 mg injected; 
column 5 x 0.46 cm of CIB silica; mobile phase, methanol-water (40:60); flow-rate, 0.9 ml/nun; temper- 

ature, 35°C (see ref. 21 for details). (a) elution curve from chromatogram; (b) cumulative elution calculated 
from (a) as described in ref. 21. 

Sometimes we will find that the procedure of Fig. la is preferable for mea- 
surement of k’ or N. More often we will use values of k’ and N based on the cu- 
mulative elution curve (Fig. lb). Fig. 2 shows two superimposed bands, separated 
under overload conditions, with an arbitrary cutpoint indicated by an arrow. In 

‘*I :--&‘ 1 ,i 
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Fig. 2. Hypothetical elution curves for two overlapping bands under overload conditions. (a) From the 
chromatogram; (b) cumulative elution plots. 
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preparative HPLC, we are primarily interested in the yield and purity of fractions 
collected as illustrated in Fig. 2 (arrows). This information is more readily derivable 
from cumulative elution curves, as in Fig. 2b (92% yield of A in fraction 1, with a 
purity of 90%; assumes equal values of w, for each band). We will refer to values of 
k’ and N determined as in Fig. la as “band” values. Values of k’ and N determined 
as in Fig. lb will be referred to as “cumulative” values. 

The Craig model 
Attempts at creating a fundamental theory for overload HPLC have been re- 

ported by several workers. One of the more successful of these approaches is a per- 
turbation model based on the mass balance equations that describe the concentra- 
tions of sample and mobile phase during separation (refs. 4, 5, 14, 16, 17 and related 
discussion in ref. 24). A Langmuir isotherm is assumed, and the model is limited to 
the case of moderate overloading of the column. Other approaches to predicting 
overload separation have also been described *O,l 1,15, but these appear less well de- 
veloped, as well as more empirical. The major limitation of these treatments at the 
present time is that they apply only to the case of a single solute band. They are 
therefore unable to predict what will happen in the case of “real” separations, where 
two or more bands co-elute. We have therefore examined an alternative approach 
that will be shown applicable to the case of samples containing two or more com- 
ponents*. 

The Craig distribution model, based on counter-current migration of a sample 
band in a train of equilibrated stages or “plates”22, has often been used for illus- 
trating or modeling chromatographic separation under non-overload conditions. The 
sample is placed in the first stage, and after equilibration of mobile and stationary 
phases, the mobile phase is then moved to the second stage; fresh mobile phase is 
added to the first stage, and the process is repeated. The process adequately describes 
the retention or equilibrium properties of the separation; the kinetic or band broad- 
ening characteristics can be represented by varying the number of stages in the sys- 
tem. The plate number No (small sample) is related to the number of Craig stages IZ~ 
and capacity factor k. (small sample) as 

No = (nc + 1) (ko + l)/ko (1) 

Early attempts at modeling overload separation in liquid-solid chromato- 
graphyz5 via the Craig model showed promising results, but the speed of pre-1960 
computers made simulations for large values of N impractical. More recently, the 
Craig model has been used to simulate band shapes for HPLC systems that exhibit 
tailing2(j. Using an IBM XT computer, we have been able to extend this approach to 
separations under overload conditions, for reasonably large values of both N (2000) 
and k’( 10). These data suggest a simplified model of overload separation that allows 
the fast prediction of elution curves for any values of N and k’. 

* In later papers we will show that the present model for mass overloaded separation of single- 
component samples can be adapted to the case of samples containing more than one component. The 
latter approach makes use of the concept of “column blockage”, where one solute is regarded as effectively 
saturating some fraction of the stationary phase, thereby reducing the stationary phase or column length 
available for sorption of the second solute. 
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The Craig model is deficient in that no band broadening is predicted for the 
case of k0 = 0. While this result is physically unrealistic, bands eluted at k’ = 0 are 
of minimal interest. For k0 > 0 the value of n, can be adjusted to match the desired 
value of No; in the second paper21 we will see that Craig-derived values of N (large 
samples) correlate well with experimental data as a function of sample size. In the 
following discussion, values of N or No correspond to plate number measurements 
as in Fig. 1; values of n, from the Craig simulations are also noted, but are not 
considered to be significant, except as they define values of NO (eqn. 1). 

Langmuir isotherm simulations 
Plate number N vs. sample mass. Initial simulations with the Craig model were 

carried out using classical Langmuir isotherms, which can be represented (Appendix 
I) as 

l/w,, = a + b/Cx (2) 

Here w,, is the mass of solute in the stationary phase (g, for total column), and C, 
is the concentration in the mobile phase (g/ml) at equilibrium. The constants a and 
b in eqn. 2 are given as 

a = l/wS 

and 

The quantities k0 and V,,, refer, respectively, to the value of the capacity factor k’ for 
small samples, and the column dead volume (equal to [to 1;1; where F is the flow- 
rate). The saturation capacity w, corresponds to the maximum solute uptake by the 
column when C, is very large; it has also been referred to2 7 as the “maximum loading 
capacity”. A further discussion of the Langmuir isotherm is given in the following 
paper2 l. 

Computer simulations based on the Craig model (“Craig simulations”) were 
next carried out for a broad range of conditions. Values of the Craig stage-number 
n, were varied from 50 to 1000, the capacity factor (small samples) k0 was varied 
from 1 to 10, and sample size was varied from the linear-isotherm region to heavi- 
ly-overloaded separations. Values of k’ and N were determined for each run, and the 
ratios k’/kO and N/N,, were used to assess the effect of column overload on the 
separation. These results are reported in Table I and summarized in the plots of Figs. 
3 and 4 (n, values of 50-1000; k0 = 1, 3, and 10) as a function of w,/wS, the fractional 
loading of the column by sample. The quantity w, is the mass of sample injected into 
the column; w, = 0.1 g in these examples. Values of No ranged from 53 to 1965. It 
is seen (Figs. 3 and 4) that the relative overloading of the column, as measured by 
values of k’/kO or N/No, can occur at quite different sample sizes (w,/w,), depending 
on k,, and No. 

We next considered whether the data of Figs. 3 and 4 could be reduced to 
some simple relationships. The treatment of Poppe and Kraak14 suggests for (a) 
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TABLE I 

DATA FROM CRAIG SIMULATIONS OF OVERLOAD SEPARATION 

Langmuir isotherms from eqns. 24 with I) = 100 mg/ml, W, = 100 mg, and V,,, = 1. 

k’lko 

cum* ban8 

NlNo 

Cl& ban& 

50 100 

65 

53 

200 398 

264 

216 

600 1193 

0.0001 0.0005 0.0025 1.00 1.00 1.00 1.00 

0.01 0.05 0.25 0.96 0.96 0.99 0.98 
0.03 0.15 0.75 0.90 0.88 0.95 0.93 

0.10 0.50 2.5 0.72 0.66 0.75 0.70 

0.30 1.5 7.5 0.46 0.32 0.43 0.36 

0.60 3.0 15 0.26 0.14 0.31 0.26 

0.001 0.006 0.036 1 .oo 1 .oo 1.00 1 .oo 

0.01 0.06 0.36 0.96 0.95 0.97 0.96 

0.03 0.18 0.11 0.88 0.85 0.87 0.82 

0.10 0.65 3.5 0.67 0.59 0.49 0.41 

0.20 1.2 7.3 0.51 0.38 0.27 0.20 

0.40 2.4 15.6 0.33 0.18 0.15 0.09 

0.0001 0.00066 0.0040 1.00 1.00 1.00 1.00 
0.003 0.02 0.13 0.99 0.99 0.99 0.99 
0.03 0.20 1.3 0.90 0.87 0.83 0.78 

0.06 0.4 2.6 0.78 0.71 0.55 0.47 
0.10 0.66 4.4 0.67 0.56 0.33 0.24 
0.20 1.3 8.8 0.49 0.33 0.14 0.07 
0.35 2.3 15 0.33 0.17 0.07 0.03 

0.0005 0.005 0.050 1 .oo 1.00 1.00 1 .oo 
0.005 0.05 0.50 0.97 0.96 0.98 1.97 
0.02 0.20 2.0 0.88 0.84 0.80 0.77 
0.05 0.50 5.0 0.76 0.69 0.50 0.46 
0.10 1.5 15 0.56 0.43 0.22 0.19 

0.0002 0.0025 0.030 1 .oo 1 .oo 1 .oo 1 .oo 
0.005 0.061 0.74 0.96 0.95 0.94 0.93 
0.02 0.245 3.0 0.85 0.81 0.62 0.58 
0.05 0.61 7.4 0.73 0.65 0.30 0.25 
0.10 1.2 15 0.61 0.49 0.15 0.12 

0.000 1 0.0013 0.018 1.00 1 .oo 1.00 1.00 
0.004 0.053 0.72 0.98 0.98 0.98 0.97 
0.01 0.13 1.8 0.94 0.94 0.86 0.83 
0.02 0.27 3.6 0.88 0.84 0.59 0.54 
0.03 0.40 5.4 0.83 0.77 0.40 0.35 
0.05 0.67 8.9 0.76 0.66 0.23 0.18 
0.08 1.1 14 0.67 0.54 0.13 0.09 
0.095 1.3 17 0.64 0.50 0.10 0.07 

0.0001 0.0017 0.030 1.00 1.00 1.00 1.00 
0.003 0.052 0.89 0.96 0.95 0.94 0.93 
0.01 0.17 3.0 0.90 0.87 0.67 0.65 
0.02 0.35 6.0 0.83 0.78 0.43 0.40 
0.03 0.52 8.9 0.79 0.72 0.31 0.29 
0.051 0.88 15 0.72 0.62 0.20 0.18 

(Continued on p. 32) 
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TABLE I (continued) 

nc NO ko WXIW, WXk W&W k’lko NNo 

790 

627 

1000 1965 

1300 

0.0001 
0.001 
0.004 
0.01 
0.02 
0.034 

0.0001 
0.01 
0.03 

l&5 
0.005 
0.01 
0.02 
0.03 

lo-5 
0.0025 
0.005 
0.015 

cum* ban8 cum* band’ 

0.002 0.04 1.00 1 .oo 1.00 1.00 

0.021 0.44 0.99 0.98 0.98 0.97 

0.084 1.8 0.94 0.93 0.81 0.79 

0.21 4.5 0.89 0.85 0.49 0.46 

0.42 8.9 0.82 0.76 0.27 0.25 

0.72 15 0.76 0.68 0.16 0.14 

0.0023 0.053 1 .oo 1.00 1.00 1 .oo 

0.23 5.3 0.91 0.88 0.52 0.49 

0.69 16 0.81 0.73 0.16 0.13 

0.00022 0.0049 1.00 1.00 1 .oo 1 .oo 

0.11 2.5 0.93 0.92 0.73 0.72 

0.22 4.9 0.88 0.86 0.48 0.47 

0.44 9.9 0.82 0.77 0.28 0.26 

0.67 15 0.78 0.71 0.20 0.18 

0.00003 0.0008 1.00 1.00 1.00 1.00 

0.067 1.8 0.95 0.94 0.81 0.79 

0.14 3.6 0.92 0.90 0.56 0.55 

0.41 11 0.84 0.78 0.23 0.21 

* Cum values calculated from cumulative elution curve as in Fig. 1 b; band values from elution 

curve as in Fig. la. 

0.8 - 

N/N 0 

0.6 - 

0.2 - 

Fig. 3. Craig simulation data for plate number N as a function of sample size (w,/w,) and non-overload 
values of k’ (k,) and N (No). Numbers on curves, 100/l indicates No = 100 and k. = 1 (see Table I and 
text). Values of No are “band” values, calculated as in Fig. la (not lb). (- - -) k. = 3; (. .) ko = 10. 
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k’ 

(wx/ws) 

Fig. 4. Craig simulation data for capacity factor k’ as a function of sample size (w,/w,) and non-overload 
values of k’ (k,,) and N (No). See data of Table I. Values of k’ are “band” values, calculated as in Fig. la 
(not lb). 

moderate overloading of the column, and (b) a Langmuir isotherm, that N/N,, will 
be defined by some function of No, kc,, and w,/w, 

Here we define wXN = N&O/( I+ k,,)12 w,/w,: wXN is the “loading function” for N/N,, 
as a function of sample size. The data of Fig. 3 are replotted against wXN in Fig. 5; 
as expected from ref. 14, the values of N/N0 now cluster about a single curve. That 
is, use of the loading function w xN allows us to predict values of N/N~ for any com- 
bination of values of No, k,, and wX/wS, using the master curve (solid line) of Fig. 5. 
This master curve is the best fit to data for large No (see below). Note that wXN can 
be regarded as the mass of sample X contained in the stationary phase of the first 
Craig stage. 

While the treatment of Poppe and Kraak14 and eqn. 5 have been derived for 
the case of moderate column overloading, we will show that this relationship (eqn. 
5) is reasonably accurate for samples large enough to effect a 90% reduction in values 
of N. 

Capacity factor k’ vs. sample mass. The effect of sample overload on k’ is 
related to the average sample concentration in the stationary phase during migration 
of the band through the column. That is, the instantaneous value of k’ during mi- 
gration of the band through the column will vary (approaching kO as the sample 
becomes more dilute), depending on the mass of sample in a given plate (i.e., sample 
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Fig. 5. Correlation of values of N/N,, with column loading function wxN. 
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Values of N are “band” values, calculated as in Fig. la (not lb). The solid curve is drawn through 
data-points for No > 200. 

concentration at each point within the column). The resulting k’ value at elution will 
then be (roughly) the average of k’ values for the band maximum at every point 
along the column, which is in turn related to the average concentration of solute in 
the stationary phase (w,,; cJ eqn. 4-l of ref. 23). We can obtain an inferential relation- 
ship between the average k’ value and experimental conditions (including sample 
size) as follows. The band-maximum concentration of sample in the stationary phase 
will be proportional to the fraction of total solute in the stationary phase, equal to 
k’/( 1 + k’). This solute concentration will also be inversely proportional to band 
width; i.e., proportional to P.5. This suggests, by analogy with eqn. 5, that 

k’iko = f{ti.” [kol(l +ko)l w&s1 (6) 
= f(Wxk) 

Here the loading function wXk equals [ko/(l + k,)] po.5. Eqn. 6 suggests that column 
overload, as measured by values of k’/ko, is determined by the value of the loading 
factor w,k; i.e., plots of k’/ko vs. wxk should fall on a single curve for various values 
of ko, No or w,/w,. Fig. 6 replots the data of Fig. 4 as k’/ko vs. wxk, and shows (as 
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0.1 1 

” xk 

Fig. 6. Correlation of values of k’/kO with column loading function wxk. Same symbols as in Fig. 5. Values 

of k’ are “band” values, calculated as in Fig. la (not lb). the solid curve is drawn through data points for 
No > 200. 

in Fig. 5) that all the data cluster about a single curve that can be used to predict 
k’/ko as a function of experimental conditions. 

It appears that eqns. 5 and 6 become progressively more reliable for larger 
values of N,,, as summarized below: 

Variable x-axis scatter in plotted values 

vs. w, vs. WXk, WXN 

All data No > 200 

N 

k’ 
40 x 4x 1.2x 

4x 2x 1.3 x 

That is, for No B 200, the scatter in the data is equivalent to an uncertainty of only 
20-30% in sample size (or values of the loading factor)*. Values of No in preparative 
HPLC will usually exceed 200; we have therefore drawn the curves of Figs. 5 and 6 
through data points for No 3 200. The reduced accuracy of eqns. 5 and 6 for small 
No (n, < 200) is probably the result of increasing differences in Craig distribution 
vs. continuous chromatography as a stage or plate occupies a larger fraction of the 
total column. 

For the case of systems following the Langmuir isotherm (eqn. 2), Figs. 5 and 

l That is, when the solid curves of Figs. 5 or 6 are shifted horizontally by ca. 20-30%, they overlap 
most of the data points for No > 200. This reflects the error in values of k’/kO or N/N0 that are predicted 
from the solid curve. 
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cl C b a 

W/VJ 

Fig. 7. Shape of cumulative elution band as a function of column overloading (see text). n, = 600, k, 
= 3 (Table I). 

6 suggest that we can predict k’ and N in preparative HPLC as a function of ko, No 
and w&v,. So far, we have only considered computer simulation (Craig model) data, 
but in the following paper we will see that this is true for experimental data as well. 
Thus, we can determine k. and NO from an initial analytical-scale run, and values of 
w, can then be determined in various ways, as described in the following pape?‘. 

Band shape vs. sample size. We desire to predict the cumulative elution curve 
(as in Fig. 1 b) as a function of sample size and other experimental conditions. This 
curve is related to values of k’ and N, which can be predicted as above for overload 
separations. However, band shape also changes with overload, and we must take this 
into account. We have found that various measures of band shape (e.g., band asym- 
metry) correlate well with the loading function WXN, suggesting a simple approach for 
predicting band shape as a function of sample size (Appendix II). 

Fig. 7 shows some representative examples of cumulative-elution curves* for 
varying sample size, taken from a series of Craig simulations where only sample size 
was varied. Curve a shows a non-overloaded run, with the data falling on a single 
straight line. This is expected for a Gaussian band, when plotted on “probability 

* These plots of Fig. 7 are on “probability paper”. The y-axis is labeled “cumulative %“, but is 
linear in units of 0 (standard deviation) of the Gaussian curve. Thus, 50% corresponds to 0 = 0, 16% to 
c = - 1, 84% to cr = + 1, etc. Any “true” Gaussian distribution will therefore plot as a straight line on 
probability paper. 
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(V/Vm) 

Fig. 8. Prediction of elution curves (Craig simulation, Langmuir isotherm, data of Table I) based on 
relationships of Table II (cumulative values) and procedure of Appendix I (see text). 0, Craig simulations; 

-* model simulations. 

Curve n< ko 4% Curve n, ko w&J, 

600 1 0.051 j 600 10 0.030 
0.030 k 0.010 

0.020 I 1000 1 0.030 
0.010 m 0.020 
0.003 n 0.010 

3 0.020 0 0.005 

0.010 P 3 0.015 
0.004 
0.001 
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paper”. Curves b-d show that, as overloading of the column increases, there is in- 
creasing deviation of the cumulative elution curve from a Gaussian distribution. 

Cumulative elution curves as in Fig. 7 characteristically exhibit two distinct 
parts, where the initial part of the elution curve follows a steeper, roughly linear plot 
and the final part of the curve follows a shallower, roughly linear plot. That is, such 
elution curves appear to be a composite of parts from two separate Gaussian curves: 
one describing the first part of the elution band, and one describing the last part. The 
slopes and points of intersection of these two straight-line curves correlate well with 
the loading function WXN, over a broad range of choices of k,,, No and wJw,. That 
is, the overall shape of the elution band appears to be defined by the value of wXN. 

It is possible to generalize these observations relating to Fig. 7, and to predict 
the shape of the elution band as a function of experimental conditions (k,, No, w, 
and w,). These relationships are summarized in Appendix II. Combining these equa- 
tions with the correlations of Figs. 5 and 6 then allows prediction by computer of 
the entire elution curve (Craig model, Langmuir isotherm) for any experimental con- 
ditions (any values of kO, No, wX and w,), but without repeating an actual Craig 
simulation. We will refer to such simplified calculations as “model simulations”. 
Several examples of model simulations are compared with Craig simulations in Fig. 
8, with good agreement between the two simulations. The advantages of bypassing 
the actual Craig simulations include: 

(1) Craig simulations for No values > 1000 require a prohibitive amount of 

TABLE II 

BEST-FIT VALUES OF N/N,, AND k’/ko vs. THE VARIOUS LOADING FUNCTIONS 

Data from Figs. 5 and 6 and Table I 

wxN or w,k 

0.01 
0.02 
0.05 
0.10 
0.20 
0.50 
1.0 
2.0 
5.0 

10 
20 
50 

100 

- 

NINo 
Cum* 

1 .oo 
1 .oo 
1.00 
1 .oo 
1.00 
0.98 
0.93 
0.80 
0.48 
0.26 
0.14 
0.06 
0.03 

k’lko 

Band 

1 .oo 
0.99 
0.97 
0.93 
0.86 
0.74 
0.57 
0.33 

Cum** 

1.00 
0.99 
0.97 
0.95 
0.90 
0.81 
0.70 
0.45 
0.18 
0.07 

l Data can be fit by the following polynomial in x = log w,,.,, within the limits of 0.5 < W,N < 
20: N/N0 = 0.9308 - 0.2779 x - 0.5098 x2 - 0.3252 x3 + 0.3127 x4 + 0.3275 x5 - 0.1434 x6 - 0.0946 
x’ + 0.0394 x8. 

l * Data can be fit by the following polynomial in x = log w,~, within the limits of 0.02 < W,X < 
5: 0.6857 - 0.6427 x - 0.6453 x2 + 0.1303 x3 + 0.8568 x4 + 0.3653 xs - 0.3270 x6 - 0.2867 x7 - 
0.0591 x8. 
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time for small computers (e.g., the IBM XT); model simulations (Appendix 11) re- 
quire less than 1 min per run for any value of No. 

(2) The value of No for each solute in a model simulation can be assigned, 
whereas these values are fixed in Craig simulations according to eqn. 1. 

(3) The generalized correlations of Figs. 5, 6 and Appendix II allow better 
insight into the effects of different variables on preparative separation; we will show 
this in later papers. 

Table II summarizes values of N/N, VS. w xN and k’/ko vs. wxk (solid curves of 
Figs. 5 and 6) for use in model simulations, as described in Appendix II. 

DISCUSSION AND CONCLUSIONS 

Considerable simplification has been achieved so far in describing how an elu- 
tion band changes with column overload. For the case of Langmuir-isotherm Craig- 
simulation runs, we have shown that the resulting changes in the elution curve can 
be predicted from a knowledge of (a) the elution band under non-overload conditions 
(values of k. and No) and (b) sample size in relation to column saturation capacity 
(w,/w,). The comparisons in Fig. 8 show our ability to predict the final elution band 
(as obtained by Craig simulation), using the much faster “model simulations”. The 
expanded scale of the x axis of Fig. 8 should be noted, as it exaggerates errors in 
predicted data points. 

Previous workerssJ6 have noted that columns can be overloaded with respect 
to plate number N, while the capacity factor k’ remains unchanged. This becomes 
more noticable with decrease in size of the column packing particless*12. The present 
analysis confirms (as noted in ref. 12) that particle size per se is not the critical factor 
in these obervations; rather it is the actual value of N under non-overload conditions 
(N is usually larger for small-particle columns). 

We can calculate the value of (w,/w,) equal to the fractional saturation of 
column capacity required to reduce both N and k’ by some arbitrary amount (e.g., 
20%) as a function of No (value of N for non-overload separation). These results 
are shown in Table III. Also shown are approximate weights for a typical preparative 

TABLE III 

SAMPLE SIZE REQUIRED TO REDUCE k’ or N BY 20% (VS. VALUES OF k. AND N,, - NON- 
OVERLOAD SEPARATION) 

k. = 3. Data of Figs. 5 and 6. 

NO W&v, for 20% 
reduction in k’ 

100 0.07 
300 0.04 

1000 0.02 
10 000 0.007 

100 000 0.002 

M;/W~ for 20% 
reduction in N 

mg sample* 

k’ N 

0.04 730 420 
0.01 450 105 
0.004 210 42 
0.0004 70 4 
0.00004 21 0.4 

l For 20% reduction in k’ or N, assumes 10.5 g for w.; e.g., 25 x 2.1 cm column, 300 m*/g surface 
area. 
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column (25 x 2.1 cm, w, x 10.5 g). For small-N columns (N < 1000) we see that 
both k’ and N will decrease when the sample size exceeds some maximum value. 
However, for more efficient columns (N > lOOOO), larger samples will result in a 
decrease in N long before any change in k’ is apparent (cJ also Figs. 3 and 4). 

APPENDIX 1 

Derivation of Langmuir isotherm 
The Langmuir isotherm assumes an adsorbed monolayer for the stationary 

phase, with one molecule of solute (x) replacing one adsorbed molecule of mobile 
phase (M) during retention of the solute. This leads to the general equation (e.g., 23) 

tJx = K N,/(l + K NJ (Al) 

where 8, is the mole fraction of solute in the adsorbed monolayer and N, is the mole 
fraction of X in the mobile phase; K, is the thermodynamic distribution coefficient 
for X. Eqn. Al assumes that N, < 1. If we further assume that the density and 
molecular weight of molecules of M and X are the same for each compound, then 

6x = WXSIWS C-1 

and 

N, = w,,/V,,, = cx (g/ml) (A3) 

Here w,, and w,, are the weights of X in the stationary and mobile phases, respec- 
tively, w, is the weight of an adsorbed monolayer of X, V,,,,is the volume of mobile 
phase within the column (column dead-volume), and C, is the concentration of X in 
the mobile phase (g/ml). 

Eqns. Al-A3 combine to give 

l/w,, = Ws + (l/w,) D/W Cd 

For small values of 8, and N,, we have (eqns. Al-A3) 

(A4) 

K = (wxsh) (Wx) (A% 

and 

ko = w&‘m Cx) 

We can define the phase ratio 

* = %IVm 

646) 

(A7) 

and eqns. A5 and A6 then give 

K = kol$ W) 



HPLC SEPARATION UNDER OVERLOAD CONDITIONS. I. 41 

Now eqns. A4 and A8 yield 
l/W,, = f/W + [l/VI-n kdl u/cx) 

=a +h (1/GJ 
Q 

The parameters a and b are fixed for a given HPLC system, with 

a = I/& 

(A9) 

(-410) 

and 

b = l/V, ko (Al 1) 

The units for the various quantities above may appear confusing, until it is 
recalled that our derivation assumes that the densities of solute and mobile phase are 
the same. Therefore concentration C, (g/ml) is equivalent to (g/g). See the Glossary 
of symbols for preferred units for each quantity. 

Fig. A 1. Illustration of cumulative elution curve under overload conditions and empirical parameters used 
to predict the elution curve (cf Fig. 7 and Appendix II). (a) Full elution curve; (b) magnified portion of 

(a). 
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APPENDIX II 

Empirical description of overload elution curves 
The characteristic cumulative elution curves of Fig. 7 can be represented gen- 

erally by the diagram of Fig. A 1. The two linear parts of the elution curve are shown, 
along with the volume corresponding to intersection of the two linear curves (Vi), 
the corresponding Gaussian standard deviation gi, and the retention volume VR 
(either “band” or “cumulative”). The slopes of the two curves as measured from cr 
= 0 to cr = - 1 and + 1 are defined as l/q, and l/ql, respectively. In each case, the 
slopes are equal to da/dvR, where VR is elution volume. We can regard the total 
elution curve as the sum of two separate elution curves; one with a larger N-value 
and smaller bandwidth (ql, volume units/a), and the other with a smaller N value 
and a larger bandwidth (q2). 

Fig. Alb shows an expanded view of Fig. Ala; here we further define the 
deviation of the actual (solid) elution curve from the dashed linear curves by the 
quantity A, and likewise the maximum value of A at Vi can be defined: do. 

We have studied the dependence of each of the parameters of Fig. Al (A, ql, 
q2, etc.) on separation conditions (runs of Table I), and found that these parameters 
can be empirically correlated with known properties of the system as follows: 

0. = 0 14 WZd’ L . 

q2/ql = 1 + 0.72 w,o;’ 

A0 = 0.16 w&l + 0.4 w,~) 

(‘412) 

(A13) 

The average band width (cv, volume units) can be calculated from the plate number 
N (assumes a Gaussian): 

The inverse slopes of the linear plots in Fig. Al are equal to q1 and q2, respectively. 
Since values of N are measured from bandwidth as defined for f 1 standard deviation 
around the 50% elution point (cumulative values), we then have 

2 6, = (l-0i)qr + (I +ti)qz (A17) 

Values of q1 and q2 are then obtainable from eqns. Al6 and Al 7 and previously 
determined values of N and (q2/ql). 

Knowing the value of V, at cr = 0 from the wXk function and knowing the 
slope, l/q,, the retention volumes at points greater than CJ = 0 are calculated. The 
volume corresponding to oi is calculated from Vi = VR (at CJ = 0) + ei q2. Volumes 
at smaller rr are calculated using the slope ql. The two resulting straight lines are 
then curved by subtracting the corresponding value from each 0. 

Once the elution curve is calculated, the value of VR is checked against the 
original value determined from k’: 
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v, = v* (l+k’) (A18) 

Generally the calculational procedure will have introduced a small shift in the curve 
along the x-axis, so that the final value of VR is slightly in error. The final step is 
then to shift the elution curve to correct for this effect and generate a final curve with 
a value of VR that matches that calculated from the input value of k’ (eqn. A18). 

GLOSSARY OF SYMBOLS 

For both this and the following papers; I- or II- is used for reference to specific 
equations; thus, I-6 refers to eqn. 6 of Part I) 

a 
al, a2 
AS 
h 

bl, bz 
“band” 
Craig simulation 

CX 
“cumulative” 

f( ) 
k’ 

ko 

K 

L 
M 
model simulation 

NX 
No 

SA 
Vltl 
V, 

VR 

U’s 

constant in eqn. I-2; equal to l/ws (g-r) 
value of a for sites of Type 1 or 2; eqns. II-3 and 4 
band asymmetry factor3 
constant in eqn. I-2 (ml- ‘); equal to l/( V,k,,) 
value of b for sites of Type 1 or 2; eqns. II-3 and 4 
refers to values of k’ or N measured as in Fig. I-la 
refers to predictions of k’, N or band shape by carrying out 
computer simulations based on Craig distribution 
solute concentration in the mobile phase (mg/ml) 
refers to values of k’ or N measured as in Fig. I- 1 b 
a function of ( ) 
capacity factorj; “ band” values of k’ measured as in Fig. I-la; 
“cumulative” values measured as in Fig. I-lb 
value of k’ for a small solute mass; constant as solute size is 
varied within a certain range 
thermodynamic distribution constant for retention of solute; 
eqn. I-Al 
column length (cm) 
a molecule of mobile phase; eqn. 11-l 
refers to prediction of k’, Nor band shape using the simplified 
model of Appendix II 
stoichiometry factor for retention process; eqn. II-2 
number of stages in a Craig simulation; eqn. I-l 
column plate number3; “ band” values of N, measured as in Fig. 
I-la; “cumulative” values measured as in Fig. I-lb 
mole fraction of solute in the mobile phase; eqn. I-A3 
value of N for a small solute mass; constant within a certain 
range of sample size 
surface area (m”/g) of column 
column dead-volume (ml) (ref. 3) 
column saturation capacity, measured as solute volume; eqn. 
II-6 
retention volume (ml), measured as “cumulative” value 
column saturation capacity (mg); maximum column loading at 
large values of C, 
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wxk 

413 q2 

loading function for a given capacity factor as a function of 
sample size and conditions; equal to N00.5 [k,/(l + ke)] (w,/w,) 
mass of solute in the mobile phase (mg) 
loading function for a given plate number as a function of sam- 
ple size and conditions; equal to No[kO/(l +k,# (w,/w,) 
total mass of solute injected into the column (mg) 
mass of solute in the stationary phase (mg); eqn. I-2 
value of w,, for sites of Type 1 of 2; eqn. II-3 
a molecule of solute; eqn. II-1 
mole fraction of solute in the stationary phase; eqn. I-AI 
quantities defined in Fig. I-9b 
one standard deviation of a Gaussian-shaped band 
defined from the intersection of two lines as in Fig. I-9a 
one standard deviation of a Gaussian-shaped band; measured 
in ml in Appendix I-II 
reciprocal slopes of initial and final plot, as in Fig. I-9a; values 
of c for the two parts of the band 
phase ratio (mg/ml); eqn. I-A7 
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